Structural Basis for Dual-Inhibition Mechanism of a Non-Classical Kazal-Type Serine Protease Inhibitor from Horseshoe Crab in Complex with Subtilisin
نویسندگان
چکیده
Serine proteases play a crucial role in host-pathogen interactions. In the innate immune system of invertebrates, multi-domain protease inhibitors are important for the regulation of host-pathogen interactions and antimicrobial activities. Serine protease inhibitors, 9.3-kDa CrSPI isoforms 1 and 2, have been identified from the hepatopancreas of the horseshoe crab, Carcinoscorpius rotundicauda. The CrSPIs were biochemically active, especially CrSPI-1, which potently inhibited subtilisin (Ki = 1.43 nM). CrSPI has been grouped with the non-classical Kazal-type inhibitors due to its unusual cysteine distribution. Here we report the crystal structure of CrSPI-1 in complex with subtilisin at 2.6 Å resolution and the results of biophysical interaction studies. The CrSPI-1 molecule has two domains arranged in an extended conformation. These two domains act as heads that independently interact with two separate subtilisin molecules, resulting in the inhibition of subtilisin activity at a ratio of 1:2 (inhibitor to protease). Each subtilisin molecule interacts with the reactive site loop from each domain of CrSPI-1 through a standard canonical binding mode and forms a single ternary complex. In addition, we propose the substrate preferences of each domain of CrSPI-1. Domain 2 is specific towards the bacterial protease subtilisin, while domain 1 is likely to interact with the host protease, Furin. Elucidation of the structure of the CrSPI-1: subtilisin (1∶2) ternary complex increases our understanding of host-pathogen interactions in the innate immune system at the molecular level and provides new strategies for immunomodulation.
منابع مشابه
Modifying the Substrate Specificity of Carcinoscorpius rotundicauda Serine Protease Inhibitor Domain 1 to Target Thrombin
Protease inhibitors play a decisive role in maintaining homeostasis and eliciting antimicrobial activities. Invertebrates like the horseshoe crab have developed unique modalities with serine protease inhibitors to detect and respond to microbial and host proteases. Two isoforms of an immunomodulatory two-domain Kazal-like serine protease inhibitor, CrSPI-1 and CrSPI-2, have been recently identi...
متن کاملA Second Kazal-like protease inhibitor from Phytophthora infestans inhibits and interacts with the apoplastic pathogenesis-related protease P69B of tomato.
The plant apoplast forms a protease-rich environment in which proteases are integral components of the plant defense response. Plant pathogenic oomycetes, such as the potato (Solanum tuberosum) and tomato (Lycopersicon esculentum) pathogen Phytophthora infestans, secrete a diverse family of serine protease inhibitors of the Kazal family. Among these, the two-domain EPI1 protein was shown to inh...
متن کاملA novel serine protease inhibitor acts as an immunomodulatory switch while maintaining homeostasis.
Serine protease cascades boost immune responses while maintaining homeostasis. These crucial actions are intricately regulated by cognate serine protease inhibitors. However, the mechanism underlying such a dynamic immunomodulation during acute phase infection remains obscure, particularly where the pathogen's serine protease adds a new challenge to the host. Here, we found that infection of ho...
متن کاملIsolation, cDNA cloning, and structure-based functional characterization of oryctin, a hemolymph protein from the coconut rhinoceros beetle, Oryctes rhinoceros, as a novel serine protease inhibitor.
We isolated oryctin, a 66-residue peptide, from the hemolymph of the coconut rhinoceros beetle Oryctes rhinoceros and cloned its cDNA. Oryctin is dissimilar to any other known peptides in amino acid sequence, and its function has been unknown. To reveal that function, we determined the solution structure of recombinant (13)C,(15)N-labeled oryctin by heteronuclear NMR spectroscopy. Oryctin exhib...
متن کاملPurification and Characterization of a Novel Kazal-Type Trypsin Inhibitor from the Leech of Hirudinaria manillensis
Kazal-type serine proteinase inhibitors are found in a large number of living organisms and play crucial roles in various biological and physiological processes. Although some Kazal-type serine protease inhibitors have been identified in leeches, none has been reported from Hirudinaria manillensis, which is a medically important leech. In this study, a novel Kazal-type trypsin inhibitor was iso...
متن کامل